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Water-wave experiments are presented showing the evolution of finite amplitude 
waves in relatively shallow water when no solitons are present. In  each case, the initial 
wave is rectangular in shape and wholly below the still water level; the amplitude of 
the wave is varied. The asymptotic solution of the Korteweg-de Vries (KdV) equation 
in the absence of solitons (Ablowitz & Segur 1976) is compared with observed evolu- 
tion. In  addition, the asymptotic solution of the linearized KdV equation (a linear 
dispersive model) is compared with both the KdV solution and experiments. This 
comparison is a natural consequence of the fact that, in the absence of solitons, the 
asymptotic solutions of the KdV equation and its linearized version are qualitatively 
similar. Both the experiments and the model equations suggest that the asymptotic 
wave structure consists of a negative triangular wave, travelling with a speed (gh)t ,  
followed by a train of modulated oscillatory waves which travel more slowly. Quanti- 
tative comparisons are made for the amplitude, shape and decay rate of the leading 
wave and the amplitude, dominant wavenumbers and velocities of the trailing wave 
groups. Over the parameter range of the experiments, asymptotic KdV theory pre- 
dicts more closely the observed behaviour. The leading wave is observed to decay 
more rapidly than the trailing wave groups; hence the leading wave becomes less 
prominent with time. This is in agreement with the KdV solution, whereas just the 
opposite is predicted by linear theory. Linear predictions for the trailing wave groups 
are accurate only when they agree with the KdV predictions. Both models predict 
the evolution of short waves in the trailing wave region. When the short waves are 
unstable (k > 1-36), either group disintegration or focusing into envelope solitons is 
possible. Both of these phenomena are observed in the experiments; neither is pre- 
dicted by long-wave models. The nonlinear Schrodinger equation is reviewed and 
tested as a model of these unstable wave groups. There is some evidence that the 
KdV equation and the nonlinear Schrodinger equation can be patched together to 
provide an asymptotic description of these unstable groups. 

t Present address : Aeronautical Research Associates of Princeton, Inc., Princeton, New 
Jersey. 
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1 
Group 1 Leadingwave 

(4 
FIGTJRE 1. (a) Rectangular initial (T = 0) wave. (b)  Asymptotic (T + co) structure of initial waves 
when no solitons evolve: I, x = o(7); 11, 1x1 < O ( d ) ;  UI, - X  = O [ d ( h T ) % ] ;  Iv, - X  = o(7). 

1. Introduction 
This paper is the third in a series on the propagation of finite amplitude water 

waves in relatively shallow water. Previous papers focused on the solution of the 
Korteweg-de Vries (KdV) equation for modelling the evolution of shallow-water 
waves (part 1 ; Segur 1973) and on the accuracy of this model in predicting the observed 
evolution of such waves in laboratory experiments (part 2; Hammack & Segur 1974). 
The outstanding feature of the KdV model is the important role played by solitons. 
Previous experiments were chosen to emphasize the role of solitons in the evolution 
of long water waves. 

It is also easy to generate experimentally long initial waves which produce no 
solitons; hence all of the energy in the initial data eventually is found in an oscillatory 
wave train. For these waves, the accuracy of the KdV model must be tested again. 
Moreover, the predictions of a linear long-wave model (e.g. Jeffreys & Jeffreys 1972, 
pp. 512-517) are qualitatively similar to those of the KdV model for these waves; 
hence the necessity of the nonlinear KdV equation for these waves is also in question. 

The objective of this paper is to resolve the above questions experimentally. In  
each experiment, the initial wave is rectangular in shape and wholly below the still 
water level, as shown in figure 1 (a). The wave train which travels to the right (or left) 
evolves into a form similar to that in figure 1 (b) ,  with no solitons. The observed evolu- 
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tion of these waves is compared with the behaviour predicted by the KdV model 
(Ablowitz & Segur 1976) and with that predicted by a linear long-wave model (Jeffreys 
& Jeffreys 1972). 

There are two major limitations to such a comparison. First, neither model accounts 
for viscous effects, and no attempt has been made here to correct this deficiency. 
Consequently, some features of the predicted solutions cannot be tested conclusively. 
Second, long initial waves generate short waves whose behaviour is poorly predicted 
by either long-wave model. In  $ 4 we discuss how to patch the KdV model to a short- 
wave model (the nonlinear Schrodinger equation) in order to predict the behaviour of 
these waves. 

The organization of this paper is as follows. The relevant consequences of the models 
in question (the KdV, linear dispersive and nonlinear Schrodinger equations) are 
reviewed in 5 2. A brief description of the experiments is given in $ 3, followed by a 
discussion of the wave evolution observed in these experiments. Detailed comparisons 
of various aspects of the theory and experiments are found in $4, followed by our 
major conclusions in $ 5. 

2. Review of the theories 
2.1. The Kd V equation 

The derivation of the KdV equation for two-dimensional surface waves propagating 
in only one direction in relatively shallow water was discussed in part 2. For a wave 
of amplitude y ( z , t )  propagating to the right in a channel of uniform depth h, the 
dimensional KdV equation is 

rt + (gh)*r, + %(gh)*h-l,W, + *h2(gh)*r,z, = 0. (1) 

x = h-’[x-- (gh)*t], 7 = +(g/h)*t, f ( ~ , 7 )  = # h - 1 7 ( ~ , t ) ,  (2) 

(3) 

In terms of non-dimensional variables 

this becomes 
f7 + 6ifx +&XX = 0. 

For the experiments considered herein, the initial data for (3) consisted of negative 
rectangular waves (as shown in figure 1 a): 

where A = 3A,[2h and L = L,/h. No solitons can arise from these negative waves 
(cf. part 1 )  and the linear eigenvalue problem becomes 

$‘xx + [k* + f (x, 011 @ = 0, ( 5 )  

subject t o  the boundary conditions (for real k) 

Here k is a dimensionless wavenumber and r (k) ,  the reflexion coefficient for the 
potential f(x, 0 ) ,  can be interpreted as a ‘nonlinear Fourier transform’ (Ablowitz 
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et al. 1974). For negative rectangular waves, r(&k) can be found explicitly (cf. Schiff 
1968, p. 103): 

The asymptotic (large 7) solution of (3) when no solitons exist is presented by 
Ablowitz & Segur (1976) and we state here their major results. For the initial data of 
interest herein, r(0) = - 1 and the solution is developed in four separate regions which 
are connected by matching zones (see figure l b ) .  In  region I, where x =0(7), corre- 
sponding to the upstream portion of the advancing wave front, the wave amplitude 
is exponentially small. In  region 11, where 1x1 < 0(d) and which will be termed the 
leading wave, the asymptotic solution is self-similar and approaches the exact solution 

is the similarity variable. As c-+ - co, the expansion in region I1 breaks down according 
to 

f(x, 7) - (37)-f ( - 2<){ - 2 - i( - 25)-% + . . . 
+ [(37)-)~M( - 25)4 exp (+( - 25)a) + . . . J + . . .}, (10) 

(11) 
where 

represents an ‘asymptotically preferred ’ co-ordinate which is obtained from the 
original one by a translation 

(12) 

(13) 

xo = l/A* tanh AiL,  M = 1/2A sinh2A*L (14) 

6 = (x + X0)1(37)+ 

xo = -ir’(O)/2r(O) = i ir’(0).  

M = (r”(O)r(O) - [r‘(0)]2}/8r(O) = g(r”(0) + [r’(O)]Z} 

The parameter N in (10) is determined from the initial data by 

and K is a constant of integration ( K  z 0.8). From (7) it  follows that 

for initial data given by (4). 

is found from (10); this extremum occurs where 
The location of the amplitude extremum in region 11, where df Id< = 0 and 5 z go, 

&(-2t;,)+ N In37--Qn(-2<o)--1n(2KM). (15) 

For very large times the effect of the initial data contained in the parameter M is lost, 
and (15) can be approximated by 

( - 2C0) - (2111 37)f. (16) 

For the experiments to be presented the maximum time over which the wave pro- 
perties are measured is 37 = 100 and the effects of the initial data cannot be neglected. 
The maximum amplitudef,,, of the wave front is given by 

fmax - - 4(37)4 ( - 250). (17) 

For very large times (16) and (17) together indicate that the amplitude of the wave 
front decays as [2 In (37)/37]%. 



Korteweg-de Vries equation and water waves. Part 3 341 

The breakdown of (10) in region I1 as <-+ - 00 requires the existence of region I11 
(see figure l b ) ,  where the solution behaves like a 'dissipationless shock layer'. Here 
the character of the solution must change from monotonic in region I1 to oscillatory 
in region IV. (Details of the shock layer will not be presented or compared with 
experiment.) In  region IV, where -x = O(T), the asymptotic solution is given by 

f (x, 7 )  - (37)-4 2dk4 cos 8 - (37)-lk-l (2d2 - 2d2 cos 281, 

d2 = (4n)-lln [ l -  (r(#k)I2], 

(18) 

(19) 

where 

and 
8 (37) {@3 - 2d2 In (37)/37 + (37)-l8, (k)) 

k2 = -x/37. 

For large times (18) represents a rapid oscillation of the phase 8 with a slow amplitude 
modulation [In (1 - lr (@)(2)]4 which depends on the initial data [through r(*k)] .  
Equation (21) can be interpreted as defining the group velocity for a wavenumber k, 
a concept from linear analysis which applies to this nonlinear problem as well. This 
surprising conclusion will be verified by the experiments. 

Another interesting feature of the nonlinear solution is the relative decay rates of 
the wave front and trailing oscillations. From (18) the oscillations are seen to decay 
like (37)-4 while the wave front decays a t  the faster rate [In (37)/37]-$. Hence, asymp- 
totically, the trailing wave oscillations should become the most prominent feature of 
the wave train. 

2.2. The linear dispersive equation 

A simpler model equation can be obtained by linearizing (3) to yield 

This linear equation has been used to model the propagation of long waves of small 
amplitude (see, for example, Jeffreys & Jeffreys 1972, pp. 512-517). The solution of 
(22) is 

f ( ~ , 7 )  = 277 'sm - m  d(k)exp[i(kx+k%)]dk, (23) 

where d ( k )  is the Fourier transform of the initial data: 

d ( k )  = f (x, 0) e-"xdX. (24) 

The asymptotic approximation of (23) for large 7 is easily found using the method 
of stationary phase and is conveniently described in terms of three regions. (Recall 
that four regions were required in the nonlinear analysis.) For x = 0(7), corresponding 
to region I in figure 1 ( b ) ,  the wave amplitude is found to be exponentially small just 
as in tho nonlinear analysis. For the wave front, region 11, where 1x1 = O ( d ) ,  the 
linear analysis also predicts a similarity solution, which may be written in terms of 
the Airy function Ai as 
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The shift in the co-ordinate system for the linear analysis is 
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f m  I f m  

The amplitude of the wave front is seen from (25 )  to decay like ( 3 7 ) a .  
The asymptotic solution for the trailing wave structure in region IV, where 

-x = O(T), is 

f (x, 7 )  = 3 2  cos 8, n* (37k))  . .  

with 
0 = (37){$k3+&r},  

k being given by (21 ) .  Thus, according to linear analysis, the trailing waves are again 
found to be rapid oscillations of the phase 0 modulated in amplitude, by d ( k ) / k * ,  
which decay like (37)-4. Since the wave front is decaying more slowly (like ( 3 7 ) 4 ) ,  
asymptotically the wave front should become the most prominent feature of the wave 
train. This suggested behaviour is exactly opposite to that predicted by the nonlinear 
analysis and represents a feature of the solution which can be tested by the experiments. 

For the rectangular initial wave given by (24) ,  the Fourier transform and transla- 
tion of the co-ordinate system become 

d ( k )  = - 2 ( A / k )  sin 4kL etrkL, (29)  

x o  = @* (30)  

The integral coefficient in (26 ) ,  which represents the wave volume, becomes 

J- f(x,O)dx = -AL.  
- m  

In  the companion paper (Hammack & Segur 1978) it  has been shown that asymp- 
totic linear dispersive theory is theoretically justifiable for the wave front (region 11) 
only when both an Ursell number, based on the length and amplitude of the initial 
data, and the wave volume are small. Moreover, the linear and nonlinear solutions 
for the trailing wave region can be made formally to coincide only when an Ursell 
number based on the local wavelength k-l and amplitude of the initial wave is small. 
In  the experiments presented herein, these conditions are not satisfied, and the 
limitations of the asymptotic linear dispersive theory are demonstrated. 

2.3, The nonlinear Schrodinger equation 

The solutions of both the KdV equation and its linearized version indicate that 
modulated wave groups with high frequency (large k )  carrier waves will evolve in the 
trailing wave region. The applicability of long-wave (small k )  model equations for 
describing the evolution of these short waves is immediately suspect. Hasimoto & 
Ono (1972) as well as Yuen & Lake (1975) have shown that the proper model equation 
for describing the evolution of wave packets with short carrier waves is the nonlinear 
Schrodinger equation. Following Hasimoto & Ono (1972),  a dimensional form of this 
equation in terms of a complex potential Q is 

(32)  iQT +&I,, + VIQ12Q = 0, 
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where T is a stretched (dimensional) time and X = x - Vt with V equal to the group 
ve1ocit.y of the carrier wave. The dimensional constants p and v are given by 

2p = o”,k,) = - (g /4k ,aw , ) ( [u -k~h( l -a~) ]2+4k2 ,h~u2(1  -u2”>, (33a) 

1 1 +- 2u2 (9-10u2+9d)  , (33b) 

where u = tanh k,  h, o, and k,  are the dimensional frequency and wavenumber of 
the carrier waves, and w,(k*) represents the linear dispersion relation. The dimen- 
sional wave amplitude 7 is 

(34) 7 = (iw*/g) [&eie - c.c.], 

where 8 = k, x - o, t and C.C. represents the complex conjugate. 
It is well known that Stokes wave packets with carrier waves such that k = k* h > 

1-36 are unstable (see Benjamin & Feir 1967; Whitham 1967; Benjamin 1967). 
Hasimoto & Ono (1972) point out that this information is obtainable from (32) since 
v changes sign from negative to positive across k = 1.36 as k decreases (p < 0 always). 
However, (32) remains a valid model equation even for the unstable wave. 

The nonlinear Schrodinger equation was solved exactly using inverse scattering 
theory by Zakharov & Shabat (1972). It was shown that an initial pulse which decays 
in amplitude sufficiently rapidly as 1x1 +oo evolves into a finite number of ‘envelope 
solitons’, each of whose amplitude, in an appropriate co-ordinate system, is given by 

where a,, is the maximum envelope amplitude. These ‘envelope solitons ’ are analogous 
to the long-wave solitons of the KdV equation and represent permanent wave forms 
which interact with each other without suffering any permanent change in shape. 

In  addition to the criterion ( k  > 1.36) for envelope solitons to evolve, Ablowitz 
et al. (1974) also showed that in order to  produce solitons the envelope of the initial 
pulse must satisfy 

(veldx > 0.90, 

where Ve is a dimensionless volume. 
In  summary, when a modulated wave group with a short carrier wave evolves from 

long initial waves, the subsequent behaviour of this group is expected to  be modelled 
by the nonlinear Schrodinger equation (32). If the carrier waves are such that k > 1.36 
and the packet envelope satisfies (36), then envelope solitons similar to (35) may be 
anticipated. 

The time required for envelope solitons to evolve from a modulated wave train is 
proportional to the length and inversely proportional to the amplitude of the modu- 
lation (Yuen & Lake 1975). 
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FIGURE 2. Experimental wave systems: h = 10 cm, L, = 122 cm, A ,  = 0.5 cm, M = 0.0335, 
xo = - 3.66. (a) z/h = O or 37 = 0, (b )  z / h  = 50 or 37 = 25, (c )  s /h  = 100 or 37 = 50, (d)  z /h  = 
150 or 37 = 75, (e) z / h  = 200 or 37 = 100. -+, trajectory baaed on average wavenumber between 
two stations and linear dispersion relation; - +, extrapolation of previous trajectory. 

3. Experiments 
3.1. Equipment and procedure 

The experimental equipment used in this study was described briefly in part 2 and 
in greater detail by Hammack (1973). The wave maker consists of a rectangular piston 
61 cm long at  the end of a wave tank. The rectangular wave propagating out of the 
generation region following a sudden downthrow of the piston has a length of twice 
the piston length and an amplitude of one-half the piston stroke. By varying the 
piston stroke while the quiescent water depth is fixed at  h = 10cm, the nonlinearity 
of the initial wave is varied. For all of the experiments presented herein the length 
of the initial wave is constant at L, = 122 cm or L = 12.2. The initial wave amplitudes 
are A* = 0-5cm, 1.5cm and 2-5cm. 

Waves are measured using parallel-wire resistance gauges and an oscillograph 
recorder a t  the following positions: x = 0, 50h, 100h, 150h and 200h, where x = 0 is 
the downstream edge of the piston. Some of these measurements, especially those at 
x = 200h, are incomplete because the wave reflected from the downstream end of the 
tank returned prior to the complete passage of the rightward-running wave system. 
In the comparisons with theory, wave traces at  xlh = 0, 50, 100, 150 and 200 are 
assumed to represent the spatial wave a t  the times 37 = 0, 25, 50, 75 and 100, respec- 
tively, according to the normalization given by (2). Consequently, a rightward- 
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FIG~RE 3. Experimental wave systems: h = 10 cm, L* = 122 cm, A ,  = 1.5 cm, M = 8.36 x 
10-6, xo = -2.108. (a) z/h = 0 or 37 = 0, (a) z/h = 50 or 37 = 25, (c) z/h = 100 or 37 = 50, 
(d) z/h = 150 or 37 = 75, (e) z/h = 200 or 37 = 100. +, trajectory based on average wavenumber 
between two stations and linear dispersion relation ; - +, extrapolation of previous trajectory. 

running wave necessarily appears leftward-running, i.e. the wave front appears a t  
the left in each figure. Moreover, a point moves to the left or right in succeeding 
measurements depending on whether its velocity is greater or less than (gh)B, 
respectively. 

In the comparison of theory and experiment for the trailing wave region, wave- 
numbers k are required; however, only wave frequencies w = (h/g)Bw* are directly 
measurable from the experiments. To compute wavenumbers from the measured 
frequencies, the complete (all k) dispersion relation for linear water waves 

w2 = k tanh k 

is used. This procedure is adopted since measured frequencies and the water depth 
h = 10cm indicate that many of the oscillatory waves which evolve are not ‘long’ 
and considerable error is introduced by replacing (37) by its long-wave approximation. 

(37) 

3.2. Observed wave evolution 

Figures 2-4 show the downstream wave measurements for three experiments with 
initial wave amplitudes of A ,  = 0.5 cm, 1.5 cm and 2.5 cm, respectively. The nor- 
malized wave amplitude f (or #y/h)  is shown as a function of the non-dimensional 
co-ordinate - x (or t(g/h)t - x/h) .  Wave traces are presented in this manner to empha- 
size tha t  they are in fact temporal measurements at a fixed spatial location. which are 
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FI~WRE 4. Experimental wave systems: h = 10 cm, L* = 122 cm, A ,  = 2.5 cm, M = 1-73 x 
104, xo = -1.633. (a) z/h = 0 or 37 = 0, (b)  z/h = 50 or 37 = 25, (c) z/h = 100 or 37 = 60, 
(d) z / h  = 150 or 37 = 75, (e) z/h = 200 or 37 = 100. +, trajectory based on average wavenumber 
between two stations and linear dispersion relation ; - +, extrapolation of previous trajectory. 

subject to an error O(A) when interpreted as spatial records a t  a fixed time as required 
herein. 

The initial wave measurement in all figures, corresponding to 37 = 0 (or x/h = 0) ,  
consists primarily of a negative wave which is rectangular in shape. However, oscil- 
latory waves have already formed during the time required for the wave to propagate 
past the wave gauge. In  fact, the differences in the initial wave measurements in 
figures 2-4 from that shown in figure l(o) represent the O(A)  error incurred in 
representing a spatial wave record by its temporal counterpart. These figures clearly 
show that the error is indeed enhanced as the amplitude of the initial data is increased. 

During propagation, the initial wave quickly acquires a wave structure similar to 
that shown in figure 1 (b ) .  The leading wave becomes ‘triangular’ in shape and propa- 
gates with a speed of approximately (gh)).  The amplitude of the leading wave decreases 
during propagation through the combined action of frequency separation and vis- 
cosity while the slope of its frontal face also decreases. Modulated wave groups emerge 
in the trailing wave region of the wave train and disperse behind the leading wave,. 
indicating group velocities which are less than (gh)t .  

It should be emphasized that the wave evolution observed in figures 2-4 is from 
initial data which are identical except for amplitude. If the subsequent propagation 
of each initial wave were linear, equivalent downstream measurements in each figure 
would be identical except for a proportionality factor in amplitude. It is evident from 
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these figures that nonlinearity is affecting wave evolution. For example, the amplitudes 
of the oscillatory waves increase relative to that of the leading wave as the non- 
linearity is increased. This behaviour is similar to that suggested by the nonlinear 
analysis of $ 2.1, where the decay rate for the leading wave was found to be faster than 
that for the oscillatory waves. (Opposite behaviour is suggested by the linear analysis 
in 0 2.2.) Nonlinearity also appears to increase carrier wave frequencies of correspond- 
ing wave groups. A more quantitative comparison of carrier wavenumbers will be 
presented in $4.2.1. 

An interesting phenomenon occurs in figure 3 during the propagation between the 
third and fourth measurement stations. At the third station two well-formed wave 
groups (node-to-node) are observed to be following the dispersive waves behind the 
shock region. However, a t  the fourth station the leading group appears to have dis- 
integrated, forming an irregular wave train with little apparent order. Examination 
of this wave group at the third station indicates a carrier wave frequency of o = 1.17, 
which corresponds to a wavenumber k = 1.50 according to the dispersion relation (37). 
Hence the wave packet is unstable (k > 1.36) and the subsequent disintegration of 
this group is apparently a manifestation of the wave instability discussed in $2.3. For 
this particular experiment, no envelope soliton evolves in the test section of the wave 
tank. 

4. Comparison of theory and experiment 
4.1. Leading wave 

For the wave front we limit our attention to the profile and maximum amplitude of 
the leading wave in region I1 of figure 1 (b ) .  Both the linear and the nonlinear analysis 
of 0 2 describe the wave in this region in terms of a similarity solution with a space-like 
variable 5 = (x+xO)/(37)4. The nonlinear asymptotic solution is given by (10) while 
the linear asymptotic solution is given by (25). Numerical values for the co-ordinate 
shift xo and the parameter M required in the nonlinear solution are indicated in the 
figure captions for each experiment. [These parameters are computed from (la).] The 
co-ordinate shift for the linear analysis, given by (30), depends only on the length of 
the initial data; hence xo = 6.1 for every experiment. 

Theoretical profiles for the wave front corresponding to the last measured wave 
trace in figure 4 (37 = 100 or x/h = 200) are shown in figure 5, superimposed on the 
experimental record. This comparison of the linear theory, the KdV theory and the 
experiment is so striking that perhaps no additional comment is necessary ! The dis- 
crepancy between the KdV solution and the measured location of the amplitude 
extremum is probably due to viscous effects in the measured data. Viscosity, whose 
effects are not modelled by either asymptotic solution, is expected to attenuate wave 
amplitudes through viscous energy dissipation and to ‘stretch’ the leading wave since 
boundary shear forces will reduce the wave speed near the amplitude extremum 
below that in region I of the wave front, where amplitudes are exponentially small. 
This stretching effect is illustrated in figure 5 by a wave trace taken from Lee & Kim 
(1978) representing a solution of a KdV-type equation modified to include the effects 
of boundary shear. Their solution, which is computed numerically using the initial 
wave in figure 4 as the initial data, predicts well the location of the amplitude 
extremum. 



348 J .  L. Harnmack and H .  Xegur 

- x  
5 10 15 20 25 30 35 40 45 50 

FIGURE 5. Theoretical and experimental profiles for wave front corresponding to 37 = 100 
in experiment shown in figure 4. - , experiment; --, linear asymptotic theory; - - - -, 
KdV asymptotic theory; -.-, numerical solution of a viscous-KdV theory, after Lee & Kim 
(1978). 

The agreement between the maximum amplitude predicted by the KdV equation 
and the measured data is not always as good as that shown in figure 5.  Figure 6 shows 
a comparison of measured and predicted wave amplitudes as a function of time 37 
(or x/h) ; results are shown separately for each experiment. The linear solutions shown 
in figure 6 represent a decay rate for the leading wave of (37)-* while the nonlinear 
solution, for large times, represents the faster decay rate of [In (37)/37]*. The divergence 
of these theoretical results for large times is clearly evident in figure 6. For the experi- 
ment with weakest nonlinearity (figures 2 and 6 a ) ,  the measured amplitudes are smaller 
than those predicted by either theoretical solution. However, as time increases, the 
measured data approach the KdV solution. This behaviour is more apparent for the 
experiments with larger amplitudes, shown in figures 6 ( b )  and (c) .  Clearly, over the 
range of times considered, the inviscid KdV solution provides a better estimate of 
measured amplitudes than the inviscid linear solution. 

In summary, over the range of initial data and propagation times investigated, 
linear asymptotics, as expected, fail to predict accurately any quantitative details 
of the leading wave. The KdV asymptotic solution provides a more accurate descrip- 
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tion of observed wave behaviour; discrepancies that still exist appear to be due to 
viscctus effects in the experiments. 

4.2. Trailing wave oscillations 
The outstanding features of the oscillatory waves in region I V  (see figure 1 b) ,  as 
predicted by either the nonlinear or the linear theory, are as follows. 

(i) The initial data produce definite node-to-node wave groups, each dominated 
by a single wavenumber. 

(ii) Each wave group propagates with a speed equivalent to the linear group 
velocity of its dominant wavenumber. 

(iii) The amplitude of each wave group is determined by the initial data. 
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(iv) Long initial waves will produce some wave groups with short carrier waves. 
If the dominant wavenumber of these groups satisfies k > 1-36, instabilities may occur 
which evolve according to the nonlinear Schrodinger equation. 

In  this section each of these predicted features of the trailing wave oscillations is 
comparod with the observed behaviour in the water-wave experiments shown in 
figures 2-4. 

4.2.1. Wavenumbers. The nonlinear solution (22) for the oscillatory wave region 
predicts a slow amplitude modulation given by [In (1 - lr($k)12)]*; hence nodes are 
located at the zeros of the reflexion coefficient r(&k).  For rectangular initial waves, 
r (@) ,  given by (7), has nodes at 

(ika-A)gL = p n ,  p = O,1,2, ... . (38) 

It is convenient to assume the dominant wavenumber in a group to be the value at 
the midpoint between adjacent nodes, or 

which yields 

The role of the initial amplitude A in determining group wavenumbers is clearly 
demonstrated by (40) ; nonlinearity increases the dominant wavenumber. 

For the linear solution, given by (27), the nodes of the groups occur a t  the zeros of 
d ( k ) ,  or at 

Midway between nodes, the dominant wavenumbers are given by 

(bkL-A))L = +(2m- l )n ,  m = 1,2, ... , (39) 

(40) k:,(KdV) = (4A + (2m- 1)2n2/L2}), m = 1,2, ... . 

#kL=pn,  p = 1,2 ,.... (41) 

kn(linear)=(2n+l)n/L, n =  1,2, .... (42) 

According to both the linear and the nonlinear analysis, wave groups which evolve 
should disperse according to the linear group velocity of their carrier waves. Hence 
the groups should order themselves with k increasing towards the rear of the wave 
train. 

By comparing (18), (7), (27) and (29), it can be shown that the linear andnonlinear 
solutions for the trailing waves are equivalent when 

Ak-2 Q 4. (43) 

The parameter Ak-2 is a local Ursell number based on the amplitude of the initial 
data and the local wavelength. The condition (43) is satisfied by the carrier waves for 
groups corresponding to large m or n; hence, if we require km(KdV) = k,(linear) for 
large m and n then m and n must be related by n = m - 1. Finally the dominant wave- 
numbers according to the linear solution may be written in terms of m as 

k:,(linear) = (2m- l)n/L, m = 2,3, ... . (44) 

Comparison of allowable values for m in (40) and (44) suggests that there exists an 
‘extra ’ node-to-node wave group immediately behind the shock region (corresponding 
to m = 1) for the nonlinear solution which has no linear counterpart. The dominant 
wavenumber k, of this extra wave group is always smaller than the first dominant 
wavenumber predicted by linear analysis. 

In  order to compare wavenumbers predicted by asymptotic (large-time) solutions 
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Wave Linear KdV Measured k 
gmup & & r A \ 

(m) km 37, krn 37, 37 = 25 37 = 50 37 = 75 37 = 100 

(4 
1 
2 0.77 27 0.95 20 ‘0.75’ 1.00 1.02 1.02 
3 1.29 14 1.40 13 1-45 1.60 1.55 - 
4 1.80 11 1.88 10 2.00 1.90 - - 
6 2.32 9 2.38 9 2-40 2.40 - - 

(b)  
1 
2 0.77 27 1.22 15 1.01 ’ ‘1.12’ ‘1.10’ ‘1.12’ 
3 1.29 14 1.60 12 1.50 1.50 - - 
4 1.80 11 2.04 10 2.10 2.20 - - 
5 2.32 9 2-50 9 2.80 

(4  
1 - - 1-25 15 6 1-10’ ‘0.95’ ‘ 0.95 ’ ‘ 0.95 ’ 
2 0.77 27 1.45 13 1.50 1.60 1-50 - 
3 1.29 14 1.78 11 1.72 1.85 1.90 - 
4 1.80 11 2.18 10 2.05 2.20 
5 2.32 9 2.62 9 2.50 2.45 

- 0.61 39 - ‘0.64’ ‘0.65’ ‘0.65’ - 

- - - - - 0.98 19 - 

- - - 

- - 
- - 

TABLE 1. Theoretical and experiment wavenumbers for trailing wave groups: (a) experiment in 
figure 2, ( b )  experiment in figure 3, ( e )  experiment in figure 4. Numbers in inverted commas 
represent the average wavenumber in oscillations preceding the first node-to-node wave group. 

with finite-time experiments, it is important to determine the time scale required for 
asymptotic conditions to evolve. This can be done crudely by adopting the following 
point of view, based on assumed linear behaviour. The leading wave (k = 0) propagates 
with a speed (gh)i while wave groups propagate with the linear group velocity V of 
their carrier waves. Hence the wave front and a specific wave group move relative to 
each other with a speed S = (gh)i- V .  A wave group should evolve in the time t, 
required for the wave front and group to move, relative to each other, the length of 
the initial dat,a. Hence an approximate magnitude of the sorting time for a wave 
group is 

It should be emphasized that (45) is based on the assumption of linear behaviour for 
all waves (a11 k) during their initial interaction. Nonlinear analysis does indicate that 
waves propagate with linear speeds once separated; however, it is not clear (or 
expected) that this is valid during initial propagation. Experiments will show that 
nonlinear effects appear to increase significantly the sorting time over that predicted 
by (45) for groups with small lc. 

Theoretical and measured wavenumbers are shown in tables 1 (a), ( b )  and ( c )  for 
the experiments presented in figures 2, 3 and 4, respectively. Experimental wave- 
numbers are computed from measured frequencies using the dispersion relation (37); 
results for all observable groups are shown at each time 37 (or x/h)  of measurement. 
In addition, an average wavenumber is shown in inverted commas for the oscillatory 
waves between the shock region and the node of the leading group. Prior to the 

t, = L,/S or 37, = +t,(g/h)). (45) 
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evolution of asymptotic conditions, the average wavenumber in this region should be 
representative of the next node-to-node group to emerge. The predictions of k by 
linear analysis are the same for each experiment; there is no linear prediction for 
m = 1.  Sorting times 37, are listed for each k predicted by the linear or nonlinear 
analysis. 

In  order to align the k measured at a finite time with the theoretical (andasymp- 
totic) results, observable wave groups a t  37 = 25 are ‘fitted’ to the theoretical k with 
sorting times which satisfy 37, < 25. Once the measured data are aligned at 37 = 25, 
results at subsequent times are automatically located, since the dominant wave- 
numbers of all asymptotic groups should remain constant and each group should 
propagate with the group velocity of its carrier wave. This procedure is demonstrated 
best by the results in table 1 (a) ,  for the experiment (figure 2) with weakest nonlinearity. 
At 37 = 25 three groups are observed. These groups align best with the theoretical 
computations corresponding to m = 3, 4 and 5, which have sorting times significantly 
smaller than the time of measurement. Note that for all three groups the nonlinear 
prediction of k agrees with the observed results better than does the linear prediction. 
Between the shock region and the partial node of the leading wave group, the average 
wavenumber is 0.75. At the next station of measurement, 37 = 50, wavenumbers for 
the groups corresponding to those a t  37 = 25 have remained relatively constant. A 
new group has emerged a t  37 = 50 with k = 1.00; this agrees well with the nonlinear 
prediction (but not the linear prediction) corresponding to m = 2. The average wave- 
number of the oscillations preceding this wave group has now decreased to 0.64, which 
is approximately equal to the nonlinear prediction k = 0.61 for m = 1.  At the sub- 
sequent times of measurement, the number of observable wave groups is reduced 
owing to the return of the reflected wave from the end of the channel and attenuation 
by viscosity. Wavenumbers for the observable groups remain constant during propa- 
gation; however, a node-to-node wave group with k = 0.61, corresponding to m = 1, 
does not emerge even though its suggested sorting time (37, = 39) is exceeded by the 
measurement times. The average wavenumber in the oscillations preceding the first 
group remains constant with a value of approximately 0.65. This behaviour suggests 
that the wave group corresponding to m = 1 (with no linear counterpart) is present 
but requires much longer to evolve than the ‘linear’ sorting time given by (45). Wave 
groups with k > 1.36 do not disintegrate during the time of measurement in this 
experiment. 

The measured data in table 1 (a), corresponding to the experiment in figure 3, are 
more difficult to align than those in table 1 (a).  At 37 = 25 three groups are observable 
which appear to represent asymptotic groups corresponding to m = 3, 4 and 5. Again 
the measured results agree better with the nonlinear prediction although not as con- 
sistently as the data in table 1 (a). Measured data at  subsequent times are again limited 
by reflexion and attenuation. In  addition, the leading wave group at  37 = 25, which 
has a dominant wavenumber k > 1.36, disintegrates before 37 = 75, and a dominant 
wavenumber is no longer measurable. No additional wave groups emerge after 
37 = 25 even though two groups, corresponding to m = 1 and 2, have sorting times 
which are exceeded by the measurement times. The average wavenumber between 
the shock region and node of the leading group remains relatively constant at  a value 
between the nonlinear predictions for k, and k,. This behaviour suggests that non- 
linearity might be affecting the sorting time of the &st two groups in this experiment. 
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The measured data in table 1 (c), corresponding to the experiment (figure 4) with 
the biggest waves, align well with the nonlinear predictions for k,, ..., k,. The 
inapplicability of the linear solution for small m is apparent in this experiment. Again 
the measured k for each group remains approximately constant as the group propa- 
gates. The wave group corresponding to m = 1 does not evolve during the time of 
measurement while the average wavenumber between the shock and node of the 
leading group remains constant at  a value below the predicted k,. Notice that for 
m 2 2 both the k predicted by the nonlinear analysis and all measured k are in the 
unstable range k > 1-36. Although no disintegration is observed, it will be shown in 
sfj4.2.3 and 4.2.4 that at  least one observable group in figure 4 is actually an envelope 
soliton. In other words, the initial wave in figure 4 appears to evolve deep-water 
solitons prior to the first time of measurement. The carrier wavenumber of each 
envelope soliton appears to be predicted well by the long-wave analysis based on the 
KdV equation. 

4.2.2. Group velocities. The nonlinear analysis of $2.1 indicates that a wave group 
should propagate with the linear group velocity associated with its carrier wave. 
Theoretical trajectories of observable wave groups are shown superposed on the wave 
records in figures 2-4. These trajectories are found by computing the linear group 
velocity based on the average wavenumber of a group between two stations of measure- 
ment (see tables la-c). Trajectories shown dashed represent an extension of the 
trajectory between the two previous stations. In  all cases, actual group positions 
agree well with those predicted by linear dispersion, even when the groups still 
overlap a t  their extremities as in figure 4. 

4.2.3. Envelope amplitudes. In  this subsection we compare measured and predicted 
values of envelope amplitudes for the asymptotic wave groups. Unlike wavenumbers 
and group velocities, the measured amplitudes are expected to be significantly 
affected (attenuated) by viscosity. No effort will be made herein to model these effects; 
hence comparison of measured amplitudes with theoretical predictions based on 
inviscid theories is necessarily limited to qualitative features. 

To leading order, the envelope amplitude according to the nonlinear analysis of 
52.1 is found from (18) and (19) to be 

(k/37)8{ - 71-l In [l - [ r(+k)l 2]1>4. (46) 

If it  is assumed that the maximum amplitude f e  of the envelope occurs midway 
between nodes, then using (40), (46) and (7)  gives 

In  a similar manner, the corresponding maximum envelope amplitude according to 
the linear analysis of $ 2.2 is found to be 

Notice that the nonlinear and linear predictions for fe are equivalent when m (or km) 
is large. In  addition, nonlinear effects cause a reduction in the predicted amplitude 
for small m,. 
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37 = 25 37 = 50 37 = 75 37 = 100 
Group KdV F------- & F-----, & 

(m) 

2 
3 
4 
5 

3 
4 
5 

2 
3 
4 
5 

k Meas. Linear KdV 

0.95 - - - 
1.40 68 116 111 
1.88 30 70  68 
2.38 16 48 47 

1.60 430 347 308 
2.04 230 210 197 
2.50 150 144 138 

Meas. Linear KdV Meas. Linear KdV Meas.Linear KdV 

(4 
108 176 158 71 144 129 62 125 111 
30 82 75 25 67 64 - - - 
14 49 48 - - - - -  - 
- -  - - - - - - -  

(b)  
230 246 218 - - - - - - 
150 148 139 - - - - - - 

(4 
1.45 1990 1245 827 1370 881 585 104 719 478 - - - 
1.78 830 579 481 410 409 340 300 334 277 - - - 
2.18 420 350 315 190 247 223 - - - - - - 
2.62 240 240 225 - - - - - - - - - 

TABLE 2. Theoretical and experimental envelope amplitudes (fa x lo4) of trailing wave groups: 
(a) experiment in figure 2, ( b )  experiment in figure 3, (c) experiment in figure 4. 

Measured and predicted amplitudes fe are shown in tables 2(a), ( b )  and (c) for the 
observable wave groups in figures 2, 3 and 4, respectively. Group identification is 
identical to that shown in tables 1 (a) ,  ( b )  and (e); nonlinear predictions for the wave- 
number are also shown. The measured amplitudes in table 2 (a)  for the experiment with 
weakest nonlinearity are approximately one-half the predicted amplitudes. This 
behaviour is expected and at least part of the discrepancy can be attributed to viscous 
attenuation. A more definitive statement cannot be made since the dimensional 
amplitudes of the groups in table 2(a) are less than 1 mm, which is approaching the 
resolution limitations of the gauge used in measurements. Repetition of measurements 
for the initial amplitudes of the groups with m = 2 and 3 in table 2 (a)  indicated a 
scatter of f 25 yo. Hence not all of the discrepancy between the experimental and 
theoretical results for these groups can be attributed to measurement errors. Viscosity 
does appear to be contributing to differences between measured and predicted results. 

The measured envelope amplitudes in tables 2(b) and ( c )  exhibit a surprising be- 
haviour : most of the measurements exceed the theoretical predictions. This behaviour 
is especially apparent for the leading group in table 2(c) a t  37 = 25, whose measured 
amplitude is 240% greater than that predicted by nonlinear analysis. (Recall that 
the data in table 2 ( c )  correspond to the experiment in figure 4, where the nonlinearity 
is largest.) This behaviour is opposite to that expected and observed in table 2(a) 
and strongly suggests that the long-wave model equations are no longer applicable 
for these wave groups. The wave instability observed in figure 3 has already indicated 
the same conclusion; however, no disintegration is observed in figure 4. Since the 
observed groups in figure 4 appear to be stable even though their amplitudes are not 
modelled by the long-wave equations considered herein, it is possible that these groups 
are envelope solitons. This hypothesis will be tested in the next subsection. 

4.2.4. Evolution of envelope solitons. Wave groups with carrier waves in the unstable 
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Group Measured 
Experiment 37 (m) k re 

Figure 2 25 3 1-45 0.07 
4 2.00 0.06 
5 2.40 Q 0.06 

Figure 3 25 4 2.10 0-77 
5 2.80 0.57 

50 3 1.50 0.44 

Figure 4 50 2 1.60 3.64 
3 1.85 2.06 
4 2.20 - 
5 2.45 - 

TABLE 3. Non-dimensional volume of unstable wave groups observed in experiments. 

regime, k > 1.36, evolve in each experiment presented. The asymptotic behaviour of 
each of these groups is modelled by the nonlinear Schrodinger equation. Consequently, 
an unstable group should evolve a finite number of envelope solitons whose shape is 
given by (35). The number of solitons is zero unless the volume V ,  of the wave packet 
is large enough to satisfy (36). 

Table 3 shows the non-dimensional volume pe of each wave group with k > 1.36 
in the experiments presented in 3.2. Computations of re are made at  the first station 
at which the group is sufficiently separated from surrounding waves. (Wave groups 
corresponding to m = 4 and 5 for the experiment shown in figure 4 do not separate 
sufficiently during observation for volumes to be computed.) The unstable groups in 
figure 2 have exceedingly small volumes; hence no deep-water solitons should evolve 
from either of these groups. In  addition, group amplitudes are very small; this indicates 
that a large time is required before asymptotic conditions predicted by the nonlinear 
Schrodinger equation evolve. Since the time of observation is limited, it  is not sur- 
prising that the wave groups retain their identity during this time and appear to be 
described by long-wave model equations. 

None of the unstable groups in figure 3 has sufficient volume to produce deep-water 
solitons. However, the leading group a t  37 = 50 (m = 3) does disintegrate during 
subsequent observation; this behaviour is apparently a manifestation of the asymp- 
totic condition when no solitons are present. A smaller time for asymptotic conditions 
to occur than in figure 2 is expected since group amplitudes have been increased in 
this experiment. (Corresponding group lengths are approximately equal in figures 2-4.) 

The two leading groups at 37 = 50 in figure 4 are seen from table 3 to have sufficient 
volume for each to produce a t  least one deep-water soliton. In  addition, the time 
expected for these solitons to evolve should be small relative to that in figure 3 since 
group amplitudes have increased significantly. In  fact, the leading group already 
appears to have evolved into a soliton shape by 37 = 50. This behaviour is demon- 
strated in figure 7, where soliton shapes based on (42) and measured group amplitudes 
are shown superposed on the wave traces a t  37 = 50 and 75. In both cases, the frontal 
portion of the group agrees well with the soliton shape while the leeward portion is 
both steeper and smaller in amplitude than that of the soliton profile. This asym- 
metry apparently is not predicted by the theory, although it seems to be a typical 
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0 

-0.15 - 
I I I I I I I I I I .  

0 25 50 75 100 125 150 175 200 225 
- X  

FIGURE 7.  Evolution of envelope solitons for experiment shown in figure 4:  - , experi- 
ment; --, theoretical profile of envelope soliton. (a) z/h = 100 or 37 = 50, (6)  z/h = 150 or 
37 = 15. 

feature of deep-water solitons measured in a laboratory. It appears not only in these 
experiments, but also in the data of Yuen & Lake (1975) and of Feir (1967). It may 
be caused by viscous effects. 

From these results, it  appears that the KdV and nonlinear Schrodinger equation 
can be patched together to describe completely the evolution of two-dimensional 
water waves. If the initial wave is short (I% > 1-36), then linear dispersive theory 
followed by the nonlinear Schrodinger equation should describe the complete wave 
evolution. If the initial wave is long, then the KdV equation can be used to determine 
the dominant wavenumber and amplitude (or energy) of each unstable wave group. 
Subsequent evolution of each of these groups is modelled by the nonlinear Schrodinger 
equation. 

5. Conclusions 
The following conclusions may be stated on the basis of the water-wave experiments 

presented herein and their comparison with the KdV and linear long-wave models. 
(i) An initially long negative wave produces no solitons. Instead, a wave train 

similar to that shown in figure l ( b )  is produced, i.e. a negative triangular wave, 
travelling with a speed (gh)t ,  followed by a train of modulated oscillatory waves which 
travel more slowly. 

(ii) The amplitude of the leading wave decreases with time. Over the parameter 
range of the experiments, amplitudes predicted by asymptotic KdV theory are in 
error by no more than 20 yo a t  the largest time of observation (37 = 100) whereas errors 
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in the linear asymptotic predictions always exceed 70%. The KdV predictions 
improve as the amplitude of the initial data is increased while the linear predictions 
become less credible. 

(iii) The observed decay rate of the leading wave exceeds that of the trailing oscil- 
lations; hence the leading wave becomes less prominent with time. This behaviour is 
predicted by the KdV model, whereas the linear model predicts the opposite. 

(iv) The trailing oscillations appear in definite groups, or wave packets. Once a 
wave packet has emerged, its dominant wavenumber remains approximately con- 
stant. The group propagates with the linear group velocity of its dominant wave. 

(v) The time required for a particular wave group, characterized by its dominant 
wavenumber, to emerge increases with increasing amplitude and decreases with in- 
creasing wavenumber. 

(vi) The dominant wavenumbers predicted by the KdV model agree with those 
observed in groups which emerge in the experiments to within approximately 10 yo. 
The dominant wavenumbers predicted by the linear theory agree with observations 
only when they also agree with the KdV model. 

(vii) The KdV model predicts the existence of one node-to-node wave group with 
a dominant wavenumber smaller than the first predicted by linear analysis. This wave 
group does not emerge in the observation times of the experiments; however, there 
is some evidence that this group does exist. 

(viii) Even though the initial wave is long, waves in these packets can be short, 
i.e. k > 1-36. During subsequent propagation, these wave packets may disintegrate 
or focus into an envelope soliton. Neither possibility is predicted by the KdV or any 
other long-wave model. There is some evidence that the KdV equation and the non- 
linear Schrodinger equation can be patched together to predict the complete evolution 
of these groups. 

(ix) The amplitudes of the wave groups predicted by either the KdV or the linear 
model can differ from the observed amplitudes by 100 yo or more. Both viscosity and 
short-wave evolution appear to play a role in determining these amplitudes. 
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